姓名:张启敏
职称:教授
导师类型:博士研究生导师
E-mail:zhangqimin64@sian.com
专业方向:生物数学
教育背景、社会兼职及获奖情况
(1) 2002-02至2004-06, 西安交通大学, 应用数学 ,博士;
(2) 1992-09至1995-06, 四川大学, 应用数学, 硕士;
(3) 1982-09至1986-07, 澳门太阳集团2020网站, 数学, 学士。
研究领域
生物数学与计算数学
代表性研究成果
[1] Jie Ren, Qimin Zhang*, Feilong Cao, Chunmei Ding, Li Wang. Modeling a stochastic age-structured capital system with Poisson jumps using neural networks, Information Sciences, 2020,516:254-265.
[2] Ting Kang, Qimin Zhang*, Haiyan Wang. Optimal control of an avian influenza model with multiple time delays in state and control variables, Discrete and Continuous Dynamical SystemsSeriesB,2020,DOI:10.3934/dcdsb.2020278.
[3] XiaojieMu, QiminZhang*. Near-optimal control forastochastic multi-strain epidemic model with age structure and Markovian switching, International Journal of Control, 2020, DOI:10.108 0/00207179.2020.1843074.
[4] Xiaojie Mu, Qimin Zhang*, Libin Rong. Optimal vaccination strategy for an SIRS model with imprecise parameters and Lévy noise, Journal of the Franklin Institute, 2019, 356: 11385-11413. [5] Kangbo Bao, Libin Rong, Qimin Zhang*. Analysis of stochastic SIRS model with interval parameters,Discrete andContinuousDynamical Systems-Series B,2019,24:4827-4849.
[6] Wenjuan Guo, Qimin Zhang*, Libin Rong. A stochastic epidemic model with nonmonotone incidencerate: Sufficient andnecessaryconditions fornear-optimality,Information Sciences,2018, 467:670-684.
[7] Wenrui Li, Ming Ye, Qimin Zhang*, Yan Li. Numerical approximation of a stochastic age-structured population model in a polluted environment with Markovian switching, Numerical MethodsForPartial DifferentialEquations,2020,36(6):1460-1491.
[8] Yanyan Du, Qimin Zhang*, Anke Meyer-Baese. The positive numerical solution for stochastic age-dependent capital system based on explicit-implicit algorithm, Applied Numerical Mathematics,2021,DOI:10.1016/j.apnum.2021.02.015.
[9]Wenjuan Guo, Qimin Zhang*. Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching, Mathematics and Computers in Simulation,2021,182:86-115.
[10] Wenjuan Guo, Qimin Zhang*, MingYe. Convergence and asymptotic stability of an explicit numerical method for non-autonomous stochastic differential equations, Journal of Difference EquationsandApplications,2020,26(11-12):1538-1563.
[11] Mengqing Zhang, Qimin Zhang*. A positivity preserving numerical method for stochastic R&Dmodel,AppliedMathematics andComputation,2019,351:193-203.
[12] Xiaojie Mu, Qimin Zhang*, Libin Rong. Near-optimal control for a stochastic SIRS model withimpreciseparameters,AsianJournalofControl,2020,22(5):2090-2105.
[13] Shiliang Pan, Qimin Zhang*, Anke Meyer-Baese. Near-optimal control of a stochastic vegetation-water system with reaction diffusion, Mathematical Methods in the Applied Sciences 2020,43(9):6043-6061.
[14] Zixiao Xiong, Qimin Zhang, Ting Kang∗. Bifurcation and stability analysis of a cross-diffusion vegetation-water model with mixed delays, Mathematical Methods in the Applied Sciences,2021,DOI:10.1002/mma.7384.
[15] Wenrui Li, Qimin Zhang*, Anke Meyer-Baese. Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poissonjumps,Mathematical BiosciencesandEngineering, 2020,17(3):2650-2675.
[16] Yan Li, Qimin Zhang*. The balanced implicit method of preserving positivity for the stochasticSIQSepidemic model,PhysicaA,2020,538:122972.
[17] Shiliang Pan, Qimin Zhang*,Anke Meyer-Baese. Dynamic analysis of a soil organic matter andplantsystemwithreaction-diffusion,Chaos,SolitonsandFractals, 接受.
[18] Qiang Li, Qimin Zhang*, Boqiang Cao. Mean-square stability of stochastic age-dependent delay population systems with jumps,Acta MathematicaeApplicatae Sinica, English Series, 2018, 34(1):145-154.
[19] Qimin Zhang, Xinjing Zhang, Hongfu Yang. Global dissipativity of stochastic LotkaVolterra system with feedback controls, International Journal of Biomathematics, 2017, 10(2): 1750022.
[20] Qimin Zhang, Yating Liu, Xining Li. Strong convergence of split-step backward Euler method for stochastic age-dependent capital system with Markovian switching, Applied MathematicsandComputation,2014,235:439-453.
出版的专著:
[1] 张启敏, 杨洪福, 李西宁. 几类生物数学模型的理论与数值方法, 科学出版社, 2018 年, 497 万字.
[2] 张启敏, 李西宁, 岳红格. StochasticAge-structuredPopulationSystems, 科学出版社,2013 年,230 万字.
主持完成的项目
1. 国家自然基金委员会,地区项目,11661064,基于噪声影响的生物修复系统渐近行 为及数值计算方法研究,2017-01至2020-12, 40万元,已结题,主持
2. 国家自然基金委员会,地区项目,11461053,基于特征投影分解的随机种群发展系 统数值计算方法研究,2015-01至2018-12, 38万元,已结题,参与
3. 国家自然基金委员会,地区项目,11261043,基于随机噪声影响的种群系统最优控 制理论与数值算法研究,2015-01至2018-12, 50万元,已结题,主持
4. 国家自然基金委员会,地区项目,11061024,随机非线性种群发展系统数值解研究 ,2011-01至2013-12,28万元,已结题,主持